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Humans learn procedures from one another through a variety of methods, such as observing someone do 
the task, practicing by themselves, reading manuals or textbooks, or getting instruction from a teacher. 
Some of these methods generate examples, which require the learner to generalize appropriately. When 
procedures are complex, however, it becomes unmanageable to induce the procedures from examples alone. 
An alternative and very common method for teaching procedures is tutorial instruction, where a teacher 
describes in general terms what actions to perform and possibly includes explanations of the rationale for 
the actions. This paper provides an overview of the challenges of using human tutorial instruction for 
teaching procedures to computers. First, procedures can be very complex and can involve many different 
types of interrelated information, including: 1) situating the instruction in the context of relevant objects 
and their properties, 2) describing the steps involved, 3) specifying the organization of the procedure in 
terms of relationships among steps and substeps, and 4) conveying control structures. Second, human 
tutorial instruction is naturally plagued with omissions, oversights, unintentional inconsistencies, errors, 
and simply poor design. The paper presents a survey of work from the literature that highlights the nature 
of these challenges and illustrates them with numerous examples of instruction in many domains. Major 
research challenges in this area are highlighted, including the difficulty of the learning task when 
procedures are complex, the need to overcome omissions and errors in the instruction, the design of a 
natural user interface to specify procedures, the management of the interaction of a human with a 
learning system, and the combination of tutorial instruction with other teaching modalities. 
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1. INTRODUCTION 
End users today are able to create numerous applications such as spreadsheets, web 
sites, and games.  How can they do this with no programming background?  They are 
empowered by interfaces and languages that are designed for a given type of task 
and are natural to use.  These interfaces and languages are not necessarily simple, 
they can be quite complex and although they may require some effort to learn they 
are learnable within reason.  End user programming interfaces have a very different 
flavor from programming environments, as they are more focused on concepts and 
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design rather than on editing raw code.  Yet, we are far from interfaces that allow 
non-programmers to specify the kinds of tasks that they would like computers to 
automate for them.   

[Kay 84] reminds us of the early days of programming, when code was 
mysteriously produced by a few select and painfully trained individuals. A bold 
estimate in 2000 anticipated that by 2005 there would be 2.75 million professional 
programmers in the United States, and 55 million end-user programmers [Boehm et 
al 00].  A more recent estimate predicted 90 million end user programmers by 2012 in 
the US alone [Scaffidi et al 06].  Of those, 55M would use spreadsheets and 
databases, while only 13M would describe themselves as programmers.  [Adams 08] 
argues that programming applications have moved from having dozens of markets of 
millions of users (focusing on large software applications of universal appeal) to 
having millions of markets each with dozens of users (focusing on reusing generic 
services and components).  The future may be one where there will be millions of 
markets of one user, each representing a personal need that cannot be fulfilled by off-
the-shelf code developed by someone else.   This would be a manifestation of what is 
known as the “long tail of programming” [Anderson 08]. 

The successful examples of end-user applications today typically focus on data 
manipulation through spreadsheets and web forms.  However, there are no practical 
approaches that allow end users to specify procedures to process data, or to control a 
physical environment.  Some approaches have been designed to learn procedures 
from examples provided by end users through demonstrations or through observation 
[Li et al 10; Castelli et al 10; Chen and Weld 08].  From a few demonstrations, a 
system induces a general procedure that generalizes from the particulars of the 
examples shown by the user. However, when procedures are complex it is hard to 
create demonstrations that cover the space of possible generalizations particularly if 
the user is to provide only a few examples. 

A complementary approach is to teach procedures through tutorial instruction, a 
method commonly used by people to teach procedures to other people.  In tutorial 
instruction, the teacher provides a natural language description of procedures using 
general situations and abstract objects [Clark et al 01; Webber et al 95]. This is in 
contrast with situated instruction or demonstrations where a particular state is used 
to illustrate the procedure [Huffman and Laird 95; Thomaz and Breazeal 08a]. 
Tutorial instruction is a concise way to communicate complex procedures, and can be 
supplemented with demonstrations or practice to improve learning [Fritz and Gil 11].  
Tutorial instruction is a common form of instruction, and there are many Web sites 
that provide this kind of instruction to convey all kinds of procedures (e.g., 
http://www/wikihow.com, http://www.ehow.com, and http://howto.cnet.com). 

Designing systems that can learn procedures from human tutorial instruction 
raises many research questions.  What form can tutorial instruction take?  What 
kinds of information will need to be conveyed to the system during instruction?  In 
what modality would this information be conveyed? Will instruction provided in a 
natural way by a human contain adequate information for the system?  What 
capabilities would such a system be expected to have? 

This article aims to provide a better understanding of the challenges we face in 
developing systems that learn from human tutorial instruction by surveying 
previously published research that is scattered in the literature. The literature on 
instruction is vast, ranging from education approaches, tutoring techniques, 
psychological models of students, education software, the writing of educational 
materials, and natural (end-user) programming to name a few. This document draws 
from three major areas:  cognitive science, end user programming, and natural 
language processing. The document is not organized by discipline, rather it 
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assembles findings from these disciplines from the point of view of the research 
challenges in learning from human tutorial instruction.  It is not meant to be an 
exhaustive compilation, but rather to extract major lessons learned from seminal and 
representative papers. 

The article is organized around two major sources of complexity in learning from 
tutorial instruction: the diversity of information that needs to be used to convey 
procedures, and the challenges that arise when human instruction is faulty.   

The first theme is that extracting procedures from human instruction is 
challenging because they include many kinds of knowledge that need to be 
appropriately interrelated by the teacher and comprehended by the learner. As 
[Donin et al 92] explain: 

 “Writing instructions for complex procedures is by no means an easy 
task (witness the great variability in quality of technical manuals and 
written instructions).  The complexity of this task is due at least partly 
to the fact that procedures themselves are complex relational 
structures and the mapping between these structures and a 
linear sequence of propositions expressed in discourse is not 
easy to define.” 

To understand the sources of that complexity, we turn to studies of human 
cognition and the ability of learners to understand instruction in alternative forms 
that appear equivalent in content.  Our focus is not to learn about cognitive 
limitations of human students, but about how human instruction is designed in 
practice to accommodate human learners.  In other words, human teachers know how 
to teach human learners, so their instructions to a system will likely be designed 
with a structure that they are used to provide to human learners.  

A second theme of the article is that procedures are challenging to teach because 
in order for end users to be able to provide instruction they need to be able to express 
it in a form that is natural for them to teach.  This results in instruction plagued 
with ambiguity, omissions, and errors in the instruction, since natural human 
instruction is more often than not poor instruction.  An average human as compared 
to a professional teacher will make many gaffes, including omitting important 
information and giving instructions that maybe easier to misinterpret. [Miller 81] 
speculates as a result of multi-year studies (emphasis is ours): 

“We speculate that […] the direct translation of natural language 
programs into formal computer programs may be feasible only 
for rather simple problems; for more complex ones we could envision 
as being necessary much more complicated interactive processes 
intervening between the subjects’ initial specifications and their 
ultimate interpretations […].  This point of view assumes that people in 
general can develop solutions for problems of even high complexity, and 
it is just the manner in which they express the solutions that can cause 
translation difficulties. Another view – certainly not counter-indicated 
by our present data – is that the locus of difficulty may well be 
conceptual, not expressional; that is, maybe subjects’ solutions 
decrease in completeness with complexity because subjects are 
less and less able to formulate conceptually adequate solutions, 
regardless of whether they are expressed in ”thoughts,” natural 
language, or computer programs.” 
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1. Background information 
• Situation information  
• Device models 
• General principles 

2. Details of procedure steps  
• Type 
• Objects and modifiers 
• Conditions 
• Effects 

3. Relationships among steps 
• Ordering 
• Goal statements  
• Goal decomposition schemas 
• Structural schemas 
• Functional schemas 

4. Control structures to organize steps 
• Iterations 
• Conditionals 
• Choices 
• Advice and policies 
• Exceptions 

 
Fig. 1. Broad categories of information that appear in human instruction. 

 
We draw from the literature on natural language processing for research on 

several analyses of corpora containing diverse written instructions.  This helps to 
understand the sources of difficulty in interpreting naturally occurring instruction.  
We also draw from research on end-user programming, also known as natural 
programming, looking at how people express instructions that are to be implemented 
by a computer.  There are many practical lessons learned from developing interfaces 
that enable people to instruct computers for tasks of varying complexity.  There are 
also many field studies of how people approach programming and what programming 
concepts are more challenging for people to understand and therefore to teach.  

As we review the literature, we give many real examples along the way.  The 
examples include procedures to manipulate physical systems as well as procedures 
that could be implemented through software agents to manage web sites or personal 
devices (e.g., smart phones).  Some examples are from instructional documents, such 
as manuals, and others are instructions given in an interactive dialogue setting.  
Through these examples we can best illustrate the challenges of learning from 
human tutorial instruction in more concrete terms. 

The article begins describing the types of information that appear in instruction, 
grouped into four broad categories: background information, procedure steps, 
organization of the instruction, and control structures.  Section 3 gives an overview of 
research and studies that reveal shortcomings in human instruction due to errors 
and omissions, organized along those four categories.  Section 4 presents major 
research challenges in this area stemming from the complexity of the procedures to 
be learned, omissions and poor structure of the instruction, unrealistic assumptions 
on the student’s background knowledge and skills, people’s attitudes towards 
teaching computers, and lack of important teaching skills in people.  
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Table 1. Situated instructions are grounded on scenarios, in contrast with more 
general instruction (from [Alterman et al 91]). 

 
General instruction “Insert card” “Make a phone call” 

Situated instruction “Insert Visa card in an ATM” “Make a call from payphone” 

“Make a call from home” 

 
 

Q: How do you go about buying an item for the office? 
A: You mean something small like a paper holder? 
Q: Yes, what do you do? 
A: Well, first I have to find a catalog, an office equipment catalog, that lists the paper 

holder.  When I found it in the catalog, I put down the vendor, the part number, the 
phone number of the vendor and so on…  all that stuff in the purchase order… 

Q: How do you continue? 
A: Hmm, I’ll call the vendor, they mostly have an 800 number, and ask for the 

current price... […]  I’d put the price down on the purchase order, too…, hmm, and 
then I’d mail the purchase order to the propriety department…  and I’d have to file 
a copy of the purchase order in our own books. 

  
Fig. 2. Situated instructions illustrate the introduction of objects (from 

[Mahling and Croft 88]). 
 

2. INFORMATION ABOUT PROCEDURES CONVEYED IN TUTORIAL INSTRUCTION 
Tutorial instruction can include the broad categories of information, summarized in 
Figure 1.  We describe throughout the rest of this section each type of information in 
turn, illustrating them with excerpts from real instructions in a variety of domains 
extracted from the literature. 
 
2.1 Background Information 
Background information includes descriptive statements about objects and situations 
that are relevant to the instruction and are assumed to be known by the student in 
order to understand the procedural instruction proper.  

Situated instruction describes a procedure in a particular usage context.  
Whereas a demonstration of a procedure uses a specific state, situated instruction 
reflects a class of states rather than a specific one.  This class of states is often 
referred to as a situation or a scenario.  Whether instruction is situated or not is a 
matter of degree, one can imagine a whole lattice of procedure abstractions that are 
more or less situated.  Table 1 shows a situated instruction where specific kinds of 
objects and properties are introduced, such as a card that is a VISA and an ATM. 

Situated instruction requires the use of bindings and constraints for each of the 
steps in the procedure. 

Studies have found that examples are preferred by learners when given both 
options, perhaps because they take less effort to process than instruction [LeFevre 
and Dixon 86].   However, teaching complex tasks is harder using examples alone.  
Situated instruction is a good compromise, since it is still based on generalities but 
grounded on specific situations [Mahling and Croft 88].  Figure 2 shows an example 
of situated instruction where objects are introduced by the teacher. 
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Procedure execution: 
1. Pick-up receiver – executed 
2. Listen for dial tone – executed 
3. Dial  -- executed 
4. Listen for ring tone – failed 

Instruction provided: 
“The call you have made requires an initial deposit.  Please hang up 
momentarily.  Listen for dial tone, deposit the required coin, and dial your 
call again. 

Fig. 3. Instructions can be given in response to execution failure and be situated in 
the context of the execution state (from [Alterman et al 91]). 

 
A form of situated instruction may be given when executing a learned procedure.  

In this case, the execution occurs in a specific situation or state, but the instruction is 
provided in a more generic manner but still be situated in a way that is generalizing 
the specific state of the failure. Figure 3 shows an example. 

Ontological information has been shown to facilitate the appropriate 
representations for learning new material [Slotta and Chi 06]. Hierarchical schemas 
are often descriptive background information about the task, in contrast with 
information that reflects the operation of the procedure [Steedhouer et al 00].   

A common kind of descriptive information is about devices that need to be 
manipulated by the procedure.  Device models have been shown to increase the 
rate and accuracy of learning, recall, and execution [Kieras and Bovair 84].  The key 
information in device models that facilitate instruction of procedures is about the 
specific configuration of the device, rather than general principles or motivation.  
That is, information that supports direct inference about the steps needed to operate 
the device. 

Instruction may also include the presentation of general principles as 
background, which can be elaborated and generalized by the student to build 
procedures.  Instruction may convey general domain-independent strategies that can 
be adapted very effectively by students [Chi and VanLehn 08].  This results in very 
versatile knowledge that can be applied to a variety of tasks.  This is useful 
knowledge for non-recurrent tasks or complex situations that typically require 
drawing from general principles and background knowledge to select appropriate 
steps and design appropriate procedures.  Alternatively, instructions can be given to 
describe many procedures that represent recurrent, routine tasks that each time 
have the same underlying structure and actions to be carried out.   

In preparation for instruction, sometimes techniques are used to recall or develop 
the background information necessary for the lesson [Schwartz and Bransford 98] so 
the learner is better prepared to process the instruction. 

 
2.2 Details of Procedure Steps 

Information about steps is typically given in linear sequence.   An example is 
shown in Figure 4. 

Several kinds of information about steps can be specified: the kind of step to be 
taken, the objects to be used, constraints on those objects, step orderings, and 
enabling conditions among steps.  These types of information are illustrated in Table 
2.   

The type of step to be taken can be indicated explicitly, or implicitly by 
mentioning some condition or state that hint to that action.  Examples of each are 
(from [Dixon et al 88]): 

 



 7 

1. Lift the receiver 
2. Wait for the tone 
3. Enter #87 
4. Enter your identification code 
5. Enter # 
6. Wait for the tone 
7. Enter *81* 
8. Enter the appropriate gate number 
9. Enter # 
10. Wait for the tone 
11. If you want to open more gate numbers: repeat steps 8. 9. 10 
12. Enter # 
13. Put the receiver down 

Fig. 4. Instructions given as explicit steps for how to open gate numbers (from 
[Steehouder et al 00]). 

 
Table 2. Instructions given as steps contain different types of information (from 

[Young 99]). 
Type of information Example 

Type of step  Login 
Objects and modifiers Check out the student handbook from the circulation desk using 

your student ID 
Ordering  Go to the registrar’s office, then submit your form to the registrar 
Conditions and effects Pay your fees so that you can register for classes 

 

 Explicit: “Remove the diffuser and then unscrew the lightbulb.” 
 Implicit: “With the diffuser off, unscrew the lightbulb.” 

 [Dixon et al 88] showed that explicit actions are interpreted as important, while 
implicit actions are interpreted as lower level details of the procedure.  In other 
words, the format of the instruction is used as a cue to discern the relative 
importance of steps.  A learner who has significant background knowledge relies less 
on this kind of cue and more in their judgment, but when learners lack background 
about the instruction task the form of the instruction can affect their understanding 
and performance.  

Objects and modifiers refer to the objects relevant to performing an action.  
Objects here refer not just to physical objects but to any constant or conceptual 
constraint on the form or qualification of the action.  Some researchers have 
classified relations between objects and actions in case frames [Fillmore 68], where 
an action corresponds to a frame and each object has a role or fulfills a case in that 
frame.  Case frames have been typically used for language interpretation and 
generation [Baker et al 98] rather than for reasoning or learning about process 
representations.  Modifiers qualify the action, for example with temporal or resource 
constraints.  For example, duration estimates and resource selection have been found 
to be important to describe specific types of processes such as project management 
[Pietras and Coury 94].   

Conditions and effects may or may not be expressed in instruction, and when 
they are they are expressed in a variety of ways.  This is exemplified in Figure 5.  
There are a variety of taxonomies of conditions and effects both in the linguistic and 
knowledge representation literature, though the instruction often does not explicitly 
state how the condition or effect must be interpreted or represented [Linden 94; 
Kosseim and Lapalme 95; Linden and Martin 95; Di Eugenio 98]. 
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• If a light flashes red, insert credit card again. 
• When the 7010 is installed and the battery has charged for twelve hours, 

move the off/stby/talk switch to stby. 
• The battery low indicator will light when the battery in the handset is low. 
• Return the off/stby/talk switch to stby after your call. 
• First, make sure the handset and base antennas are fully extended.  Then 

set the off/stby/talk switch to talk. 
 

Fig. 5. Alternative expressions of step conditions with different meanings (from 
[Linden 94]). 

 
A study by [Mahling and Croft 88] shows that a description of a situation (i.e., a 

pre-situation) can be used to recall procedures, concluding that human learners are 
able to infer preconditions that trigger a procedure since they were not taught those 
preconditions.  The study also shows that learners were not able to fully describe the 
effects of steps when asked to do so (i.e., a post-situation), however when given a 
specific statement they knew whether it was an effect of a given step or not.  
Therefore, human learners are aware of the effects of steps even if the instructions 
may not specify them and they have to be inferred. 

Humans may have alternative steps for a procedure, perhaps a prototypical one 
and several alternatives [Mahling and Croft 93]. 

 
2.3 Relationships Among Steps 

Organizational information provides an expectation for how to interpret other 
information in the instruction and understand the relationships among steps.  

Studies have shown that humans have difficulties processing and using 
instruction that only contains step information and does not offer a way to organize 
the steps.  Step information is often missing the logic connections behind the steps 
[Steehouder et al 00].  This makes it harder for people to transfer what they have 
learned into other domains by making correspondences and analogies [Smith and 
Goodman 84; Eylon and Reif 84]. It is also harder for people to recall instructions 
given as a sequence of steps only [Smith and Goodman 84].  This might be an 
indication that people have difficulties inferring completely the missing 
organizational information, and therefore we could expect that making these 
inferences will also be challenging for computers. 

The ordering of steps is typically implicit in that steps are listed one clause or 
sentence after another.  Instruction may state a particular linear order when in fact 
many alternative orderings will work, and the alternatives may have to be derived by 
the student.  Partial orderings may be indicated explicitly in the instruction.  
Concurrent execution of steps is also possible.  Examples from [Linden and Martin 
95] are: 

Sequence: “Firmly grasp top of phone handset and pull out.” 
Concurrent: “Press and hold the mouse button while you move the mouse.” 

Goal statements can be considered a very simple kind of organizational 
information, providing useful context to interpret the steps in the instruction. In 
some cases the goal statement is given first, and in other cases the steps are given 
first [Steehouder et al 00; Dixon 87]. Figure 6 shows examples that mix step 
descriptions with organizational information.  Note that this is also shown in some of 
the examples of the previous section.  [Dixon 87; Dixon 82] found that human 
learners process much faster instructions that provide first an overview of the goals 
of the procedure and then details on each of the steps.   A possible assumption is that  
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 “After you program all channels, press the ENTER button to restore the normal 
operation function.” 

“Initiate the clock setting by pressing key 1 and 4 simultaneously.” 
“Push the timer button.  The setting will be activated.” 
“If you want to add page headers and footers to the printed overview, click on 

Head/Page in the Image menu.  Next, click on Handouts, and select the 
preferred options. 

“You can make a wagon by drawing a big rectangle with two circles underneath.”  
“By drawing a long rectangle with two circles underneath you can make a wagon.”   
“This will be a picture of a wine glass.  Draw a triangle on top of an upside-down T.”  
“To make a wagon draw a long rectangle with two circles underneath”. 

 
 
Fig. 6. Instructions containing organizational information given as a goal statement 

shown as underlined text (from [Steehouder et al 00] and [Dixon 87]). 
 

Table 3. Goal statements often convey different types of key information for 
performing steps (from [Webber et al 95]). 

 
Type of information Example 
Endpoint of a step “Blot with clean tissues to remove any liquid still standing.” 
Timing between steps “Sprinkle liberally with salt to extract the liquid that has 

soaked into the fabric.  Then vacuum up the salt.” 
Enablement between steps “Go over to the mirror to straighten your bow tie.” 
Partial enablement between steps “Depress vacuum canister door release button to open door 

and expose paper bag.” 
Addition of steps “Steam for two minutes to open mussels.” 
Expectations about state “Use a screwdriver to open the paint can.” 

 
goal statements provide a framework for interpreting step information.  The learners 
follow  a  guessing  strategy,  where  they   attempt immediately to guess the 
relationships between the steps. They spend extra time generating those guesses as 
well as possibly correcting their interpretation once the organizational portion of the 
instruction is given.  Learners were often found to fail at such corrections and 
therefore have errors in performing the learned task.  The harder it is to interpret 
the steps correctly, the more advantageous it is to provide the goal statements first.   
This view is supported by the work of [Di Eugenio and Webber 96], where the clause 
describing a step and the clause describing a goal mutually constrain one another. 

 Goal statements can be given in an action-oriented form (i.e., the accomplishment 
of an action or task) or in a state-oriented form (i.e., the accomplishment of a 
condition in a state). Goal statements can be seen as a simple case of organizational 
information which will be described in the next section. 

Goal statements often include key information or constraints for the steps. Table 3 
shows some examples.  In some cases the constraints are implicit and the student 
must derive them [Webber et al 95].  For example, in “Depress vacuum canister door 
release button to open door and expose paper bag,” the instruction does not mention 
that the vacuum door must be open in order to expose the paper bag, which only 
happens if an additional action is performed either by pulling the door open or by 
pushing the button while the vacuum is horizontal so the door falls with gravity. 
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 Steps only 
 
 How to Replace a Flat Tire  

1) Get a screwdriver  
2) Use it to pry off the hubcap  
3) Get a wrench  
4) Use it to loosen the bolts that hold the wheel onto the 

rim  
5) Get a jack  
6) Place it under the car on the side of the damaged wheel  
7) Raise the car  

 
 
 
 
 
 
 
 
 
 

  Goal Decomposition Schema 
  
 How to Replace a Flat Tire 

   A. The first goal is to remove the damaged wheel  
a) To accomplish this, you need to slacken     
     the bolts that hold the wheel onto the rim  

  i) Before you can accomplish the  
     latter, you need access to the bolts  
   1) Get a screwdriver  
   2) Use it to pry off the hubcap  
  ii) Now you can loosen the bolts  
   1) Get a wrench  
   2) Use it to loosen the bolts  
 b) To get the damaged wheel off, you need  
      to raise the car high enough to pull the  
      wheel off  
  i) To raise the car, use a jack  
   1) Get a jack  
   2) Place it under the car on the  
       side of the damaged wheel  
   3) Raise the car  

 
 

Fig. 7. Instructions for replacing a flat tire with steps only shown left and using a 
goal decomposition schema shown right (from [Smith and Goodman 84]). 

 
In general, organizational information provides a framework for understanding 

how step information and other information fits into the procedure being taught, 
highlights what is important, and guides recall of prior knowledge that might be 
relevant to the instruction.  It can be thought of as a schema that can be used as a 
roadmap to fit the specific steps of the instruction.  This kind of information is 
common in all sorts of narratives and is often called expository or explanatory 
schemata [Britt and Larson 03]. 

The typical form of organizational information is as a goal decomposition 
schema.  Although the procedure to be executed is a linear or partially ordered 
sequence of steps, a group of steps may accomplish higher-level goals that can 
themselves be grouped.  As a result, there may be several levels of decomposition in 
the hierarchy.  An example from [Smith and Goodman 84] is shown on the right hand 
side of Figure 7, contrasted with using only steps as in the left hand side. 

Organizational information may be based on other kinds of information besides 
goals.  A structural schema relies on the structure or components of the object of the 
instruction. A functional schema provides information stemming from the function 
that the object of the instruction.  Figure 8 shows an example.  Notice that some 
levels state general principles that are instantiated at lower levels.  For example, 
statement V is an instantiation of statement III, and statement VI is an instantiation 
of statement IV.  

Organizational information is referred to as semantic level instruction, while step 
information is often referred to as syntactic level instruction [Steedhouer et al 00].  
Another way to look at the difference is that step information is tactical in that it 
contains information necessary for immediate execution of the procedure, but 
organizational information is more strategic in that its intention is to enable the 
learner to understand the context of the procedure and facilitate learning, recall, 
reuse, and transfer.  It also facilitates failure recovery when unexpected situations 
arise. 
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   Structural	
  Information	
   	
   	
   Functional	
  Information	
  

I.	
   You	
  will	
  construct	
  an	
  electrical	
  circuit	
  that	
  will	
  light	
  
a	
  small	
  lamp	
  when	
  you	
  press	
  a	
  switch.	
  

	
   I.	
   You	
  will	
  construct	
  an	
  electrical	
  circuit	
  that	
  will	
  
light	
  a	
  small	
  lamp	
  when	
  you	
  press	
  a	
  switch.	
  

II.	
   The	
  components	
  of	
  the	
  circuit	
  will	
  be	
  installed	
  in	
  
the	
  yellow	
  plastic	
  console.	
  

	
   II.	
   The	
  components	
  of	
  the	
  circuit	
  will	
  be	
  installed	
  
in	
  the	
  yellow	
  plastic	
  console.	
  

III.	
   Assembling	
  a	
  circuit	
  requires	
  that	
  you	
  get	
  the	
  major	
  
components	
  ready,	
  then	
  connect	
  them.	
  
	
  

	
   III.	
   In	
  a	
  circuit,	
  electrical	
  current	
  flows	
  from	
  a	
  
source	
  to	
  a	
  “consumer”	
  (i.e.,	
  to	
  something	
  that	
  
requires	
  current,	
  like	
  a	
  lamp).	
  

IV.	
   It	
  is	
  often	
  the	
  case	
  that	
  the	
  components	
  themselves	
  
have	
  to	
  be	
  assembled	
  first.	
  
	
  

	
   IV.	
   Current	
  can	
  flow	
  only	
  when	
  the	
  circuit’s	
  
components	
  are	
  interconnected	
  in	
  a	
  complete	
  
circle,	
  each	
  connection	
  being	
  made	
  by	
  a	
  wire	
  
or	
  other	
  metal	
  object	
  that	
  conducts	
  electricity.	
  

V.	
   The	
  circuit	
  has	
  three	
  major	
  components	
  (1)	
  battery,	
  
(2)	
  switch,	
  and	
  (3)	
  small	
  lamp.	
  

	
   V.	
   This	
  circuit’s	
  major	
  components	
  are	
  battery,	
  
the	
  source	
  of	
  the	
  current;	
  a	
  lamp,	
  the	
  main	
  
consumer;	
  and	
  a	
  switch,	
  which	
  in	
  ON	
  position	
  
forms	
  a	
  connection	
  that	
  allows	
  current	
  to	
  flow.	
  

VI.	
   As	
  a	
  way	
  of	
  starting	
  things	
  off,	
  we	
  will	
  first	
  have	
  you	
  
assemble	
  the	
  battery.	
  

	
   VI.	
   The	
  battery	
  itself	
  consists	
  of	
  two	
  dry	
  cells,	
  and	
  
it	
  is	
  these	
  dry	
  cells	
  that	
  are	
  the	
  source	
  of	
  the	
  
current.	
  

VII.	
   In	
  this	
  case,	
  the	
  main	
  components	
  of	
  the	
  battery	
  
consist	
  of	
  two	
  dry	
  cells.	
  

	
   VII.	
   The	
  dry	
  cells	
  have	
  to	
  be	
  connected	
  so	
  that	
  
current	
  can	
  flow	
  from	
  the	
  negative	
  pole	
  of	
  one	
  
cell	
  to	
  the	
  positive	
  pole	
  of	
  the	
  other.	
  

VIII.	
   And	
  the	
  minor	
  components	
  of	
  the	
  battery	
  consist	
  of	
  
wire,	
  nuts,	
  and	
  bolts.	
  

	
   VIII.	
   The	
  first	
  thing	
  you	
  will	
  do	
  is	
  to	
  make	
  the	
  wire	
  
connection	
  that	
  will	
  later	
  be	
  used	
  to	
  link	
  the	
  
two	
  dry	
  cells.	
  

IX.	
   The	
  first	
  things	
  that	
  you	
  will	
  do	
  is	
  to	
  wire	
  together	
  
two	
  bolts	
  that	
  will	
  be	
  placed	
  in	
  contact	
  with	
  the	
  dry	
  
cells.	
  

	
   1.	
   Select	
  the	
  short	
  red	
  wire	
  that	
  has	
  been	
  
stripped	
  at	
  both	
  ends.	
  

1.	
   Select	
  the	
  short	
  red	
  wire	
  that	
  has	
  been	
  stripped	
  at	
  
both	
  ends.	
  

	
   2.	
   Now	
  you	
  are	
  to	
  wrap	
  one	
  end	
  of	
  the	
  wire	
  
around	
  one	
  of	
  the	
  short	
  bolts.	
  

2.	
   Now	
  you	
  are	
  to	
  wrap	
  one	
  end	
  of	
  the	
  wire	
  around	
  
one	
  of	
  the	
  short	
  bolts.	
  

3.	
   Next	
  you	
  are	
  to	
  wrap	
  the	
  other	
  end	
  of	
  wire	
  around	
  
another	
  one.	
  

 
Fig. 8. Instructions for assembling a circuit, using structural information on the left 

and functional information on the right (from [Smith and Goodman 84]). 
 

2.4 Control Structures to Organize Steps 
Control structures represent non-sequential combinations of instructions.  They 

take a variety of forms in instruction, including iterations, conditionals, decision 
points, advice, and exceptions. 

Iterations often appear in instruction.  However, loop constructs are not always 
the preferred format of iteration. Rather than using loop constructs, instructions tend 
to indicate how groups of objects are often processed in aggregate operations [Myers 
et al 04].  For example: 

   
“Move everyone below the 5th place down by one.” 

When iterations are specified as loops, particular expressions are preferred. 
Objects are typically processed as lists, rather than modeled as array structures with 
indices.  Iterations over a list of objects more often take the form of taking an 
element, checking it and terminating the iteration if appropriate and otherwise 
processing it [Soloway et al 83].  This is in contrast with many programming 
languages that pick an initial element from the set and then loop over processing an 
element and then pick the next element to end the loop.  [Onorato and Schvaneveldt 
87] show that experienced programmers are much more likely to use loop 
constructions than other subjects, even when communicating with other humans. 
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GOAL: Select-text 
  Selection rule for goal: Select-text 
 If text is word, then Select-by-clicking-word 
 If text is arbitrary text, then Select-by-click-and-slide 
 
GOAL: Make-a-copy 
- [select: if you have little money use carbon-paper-method; if you have a xerox machine use xerox-

machine-method] 
  

 
Fig. 9. Choice selection policies (from [John and Kieras 96] and [Mahling and Croft 

88]). 
 
 

 “To make a piercing cut, first drill a hole in the waste stock of the interior of the pattern.  If you want to 
save the waste stock for later use, drill the hole near a corner in the pattern.” 

“Dust-mop or vacuum your parquet floor as you would carpeting.  Do not scrub or wet-mop the parquet.” 
“To book the strip, fold the bottom third or more of the strip over the middle of the panel, pasted sides 

together, taking care not to crease the wallpaper sharply at the fold.” 
 

Fig. 10. Directive (or positive) advice and preventative (or negative) advice (from 
[Linden and De Eugenio 96]). 

 
Conditional expressions are used in instructions to specify checks, applicability 

conditions, and object selection criteria.  Conditional expressions use and, or, and not.  
An example (from [Miller 74]) is: 

 “Put a card in box 3 if either the name’s second letter is not ‘L’ or if its 
last letter is ‘N’.” 

Instructions often contain information about how to generate choices and make 
decisions among them in different situations.  They may indicate choices as well as 
preferences (or relative rankings) among choices.   They may also indicate which of 
many choices is to be selected under a situation.  Choice selection criteria are 
typically given through a set of rules, where under different conditions different 
options are pursued or ruled out.  Figure 9 shows examples of such rules from [John 
and Kieras 96] and [Mahling and Croft 88]. 

Advice, policies, and imperatives refer to a form of information that is 
supposed to guide the student when confronted with a choice during procedure 
elaboration or execution.   This information can guide the choice of objects, actions, 
orderings, or strategies.  The distinctions are blurry, but policies refer to broad 
agreements within a community, imperatives refer to strong guidelines, and advice 
refers to any information that can be brought to bear in generating choices and in 
making a choice among several options. 

We can distinguish between positive and negative advice.  Positive advice or 
directives are given to point to good choices in the procedure.  Negative or 
preventative advice points out actions and situations that would be undesirable.  
Figure 10 shows examples of both kinds of advice. 

Advice is often given in a situated fashion.  A particularly handy use of advice is 
to describe exceptions to a general procedure for particular circumstances.   

 
2.5 Summary 

The range of knowledge that can be specified about a procedure is very diverse, 
including the objects and principles that provide context to the procedure, the various 
steps that the procedure is composed of, the organization of the steps, the control 
structures used to coordinate among various steps.  While specifying simpler 
procedures might involve just enumerating a few sequential steps, the description of 
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a procedure can becomes quite complex along all those dimensions.  A system must 
be able to learn from all the range of knowledge specified, and to relate the different 
pieces of instruction into a coherent working procedure. 

3. POOR TUTORIAL INSTRUCTION 
In this section, we tackle the issue of how humans express in instructions the 

kinds of information that we mentioned in the previous section.  We show that 
human instruction has a variety of omissions, errors, and other features that make it 
harder for the student to learn an appropriate procedure. Poor instruction leads to 
inefficient or limited learning.  We discuss a variety of corpus analyses of textual 
rendering of tutorial instructions, and include references to the literature that point 
out how human learners seem to address these shortcomings.  These faults occur 
naturally in human instruction, we need to design systems that can overcome these 
faults. 

 
3.1 Omissions and Errors in Human Instruction 

Human instruction has a variety of omissions that make it harder for the student 
to learn an appropriate procedure. [Galotti and Ganong 85] argue that human 
teachers follow Grice’s maxims [Grice 75] of dialogue: 1) be no more or no less 
informative than is required; 2) be truthful; 3) be relevant; 4) make your 
contributions easy to understand; and 5) avoid ambiguity and obscurity.  If the 
teacher violates these rules, the student is likely to be puzzled.  They speculate that 
instruction such as: “1. Wet hair, 2. Apply shampoo, 3. Rinse, 4. Repeat steps 2 and 3 
one time only” would be found laughable and even insulting.  They report on a study 
where people are more likely to give more detailed instructions, in particular to 
include more control statements, if they write instructions for a Martian with no 
common sense than to another human.  People assume that a human student makes 
inferences based on the instruction given, and they are mindful of the instructor’s 
intentions.  In their words, “it is bad form to belabor the obvious.”  Therefore, 
information is often left out intentionally either because it is less central to the 
instruction or because the teacher assumes that the student will infer it. 

In many cases human instruction contains errors or is poorly designed.  Errors 
are not necessarily correlated with programming expertise.  For example, a study by 
[Brown and Gould 87] showed that 44% of the formulas created by expert 
spreadsheet users who had also programming background contained errors.   A 
spreadsheet formula can be seen as a form of procedure.  Another study [Kim and Gil 
00] found that expert programmers and novices needed similar assistance in 
specifying correct procedures.   

The ambiguity of natural language manifests itself in a variety of ways in tutorial 
instruction.  [Furnas et al 87] illustrate with empirical data the tremendous 
variability in vocabulary when humans refer to the same object or action.   Less than 
a dozen people out of a thousand were found to use the term that had been selected to 
refer to a specific computer command.  Word usage for any given command was found 
to follow Zipf’s distribution, with a few words used very frequently and the vast 
majority used rarely.  Also, most words applied to only a few commands or objects.  
This means that having more words associated with objects does not imply more 
objects associated with a word.  They propose unlimited aliasing as a possible 
solution. Iteratively collection of aliases from users improved interface design at little 
loss of precision.  The convergence of the approach varies from domain to domain, 
showing in one of their experiments that after 100 subjects named a set of objects 
there was more than a ¼ chance that a new subject would propose a new term.  
[Bugmann et al 01] report that as they collected new examples of instructions new 
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words continued to appear and that the rate was not diminishing.  They found that 
on average 42% of the instruction statements had new words.  Among those, 65% had 
only one new word and 35% had between 2 and 6 new words. Other corpus analyses 
reveal the intrinsic ambiguity of natural language in expressing the same kind of 
information, particularly in analysis done to develop speech recognition and dialogue 
systems. 

Despite the omissions and errors in human instruction, human learners seem to 
be resilient and able to learn from it. When information is missing in the instruction, 
the student has to make guesses regarding the missing information.  [Lee and Dry 
06] found that people are more confident in their guesses when they have to make 
less of them.  Also their confidence is influenced by the accuracy of the advice as well 
as the frequency of the advice.   

All these faults present challenges for the development of systems that learn from 
human instruction.  A variety of studies have shown that these faults occur in 
information about each of the four major categories of information in instruction 
described in the previous section.  In the rest of this section, we address each of the 
four categories in turn. 

 
3.2 Missing and Erroneous Background Information 

The assumptions that the teacher makes on the background information that the 
student has are key in enabling the interpretation of a given set of instructions.  
There are many studies that show this for a variety of kinds of background 
knowledge such as domain-specific knowledge, general principles, learning 
strategies, experiential knowledge, related knowledge to support transfer learning, 
and other skills. [VanLehn et al 07] found that when tutorial materials are prepared 
to the level of preparation that the student has, written instructions are just as 
effective as dialoguing with a tutor. [Kirschner et al 06] discusses how tutor guidance 
is less important when the learners have sufficiently high prior knowledge to provide 
internal guidance, citing numerous studies that support this.   

 
3.3 Missing and Erroneous Information about Steps 

Important information about steps is often also missing in human instruction. 
Necessary conditions and steps may be left out of the instruction.  Contrast the 
instruction (from [Webber et al 95]): 

“Depress door release button to open door and expose paper bag.” 

with: 

“Holding canister horizontally, depress door release button to open door 
and expose paper bag.” 

where gravity is taken into account by placing the canister horizontally.  Also 
contrast with this instruction where there is an explicit action to open the canister: 

“Depress door release button, then grasp the door and pull it open to 
expose paper bag.” 

where there is an explicit user action included to open the canister door. 
[Lau et al 09] report that many instructions have missing steps as well as errors 

in the steps that were present.  Some steps were indirectly specified in commentary, 
for example “if you click on the top button you will see the next page” was stated to 
mean that the button should be clicked next. Human learners assume that steps that 
are  important  to  the  procedure will  be  explicitly  stated in the instruction, though  
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1. Pull out sharply in order to remove the phone. 
2. To remove the phone, pull out sharply. 
3. Pull out sharply for phone removal. 
4. Pull out sharply for removing the phone. 
5. For the phone, pull out sharply. 
6. Remove phone by pulling out sharply. 
7. Remove the phone.  Pull out sharply. 
8. The purpose of pulling out sharply is to remove the phone. 
9. Pulling out sharply achieves the purpose of removing the phone. 
10. Removing the phone involves pulling out sharply. 
11. The method for removing the phone is to pull out sharply. 

 
Fig. 11. Alternative forms of expressing a purpose relation between two clauses in a 

sentence [Linden and Martin 95]. 
 
they manage to learn when steps are implicit in the instruction [Dixon et al 88]. 
Conversely, when steps are relatively unimportant but stated explicitly, the initial 
inferences made about them  tend to be  erroneous and must be later corrected.  This 
does not happen when learners have expertise in the subject matter, and use their 
own judgment to decide on the importance of the steps.   

[Mahling and Croft 88] found that most people are very good at expressing task 
decomposition, sequencing, and preconditions, but are not very good at recalling 
effects of procedures and actions.  [Wright and Hull 90] report that 50% of 
instructions had omissions of locations where the procedure was to take place. 
[Lauria et al 02] found that instructions rarely specified starting or final state, but 
rather focused on the action to be performed. 

Ambiguity also affects the purpose of steps in the instruction.  [Linden and Martin 
95] analyzed a corpus of instructions from 17 diverse sources containing 6,000 words 
in 1,000 clauses.  Figure 11 shows examples of alternative expressions of the same 
information: what to do to remove a phone.  Table 4 identifies the major linguistic 
forms used and shows the number and percentage of occurrences in the corpus.  
Other studies show that there are many  alternative  language constructs to express 
the same kind of instruction information.  [Kosseim and Lapalme 00] analyzed a 
large corpus of instructions from 15 different sources containing 13,000 words to 
convey 79 procedures of different domains and target readers.  They found that the 
sentences could be classified as conveying nine types of information realized in seven 
categories of rhetorical relations.  Table 4 shows the frequency of each type of 
information (sense) as well as mappings to rhetorical relations in Rhetorical 
Structure Theory (RST) [Mann and Thompson 88].  The type of information is shown 
for the entire corpus, for the subset of the corpus designed to teach how to execute 
procedures, for the subset of the corpus designed to explain procedures, and for the 
subset of the corpus designed for combining execution and comprehension. The 
analysis showed that the same type of information may be rendered using different 
rhetorical relations, as shown in Table 5.  For example, step information (“required 
operation” category) is mostly presented as sequences, while effects (“outcome” 
category) are presented either as purpose, result, or means. 

 
 
 
 
 
 

Table 4. Alternative expressions of a purpose relation (from [Linden & Martin 95]). 
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a. Infinitive form with “to”: To end a previous call, hold down FLASH [6] for about two 

seconds, then release it. (Code-a-phone, 1989) 
b. Prepositional phrase with “for” (nominalization): Follow the steps in the illustration below, 

for desk installation. (Code-a-phone, 1989) 
c. Gerund with a “for” preposition: The OFF position is primarily used for charging the 

batteries. (Code-a-phone, 1989) 
d. Noun phrase with a “for” preposition (goal metonymy): For frequently busy numbers, 

you’ll want to use REDIAL [7], and the pause will have to be in Redial memory. (Code-a-
phone, 1989) 

e. Simple imperative joined with “by” preposition: When instructed (approx. 10 sec.) remove 
phone by firmly grasping top of handset and pulling out. (Airfone, 1991) 

f. Simple imperative in adjoining sentence: Return handset to wall unit from which it was 
taken. Insert heel first as shown, then push top in firmly. (Airfone, 1991) 

g. Simple imperative joined with “so that”: Tilt pan down slightly at the rear so that the fluid 
drains out. (Reader’s Digest, 1981) 

 

	
  	
   Initial	
   Final	
   Total	
  
(count)	
  

Total	
  
(percentage)	
  

(a)	
  To-­‐Infinitive	
   38	
   33	
   71	
   59.6%	
  

(b)	
  For-­‐Nominalization	
   2	
   7	
   9	
   7.5%	
  

(c)	
  For-­‐Gerund	
   0	
   3	
   3	
   2.5%	
  

(d)	
  For-­‐Goal-­‐Metonymy	
   1	
   5	
   6	
   5.0%	
  

(e)	
  By-­‐Purpose	
   11	
   1	
   12	
   10.0%	
  

(f)	
  Adjoined-­‐Purpose	
   4	
   0	
   4	
   3.3%	
  

(g)	
  So-­‐That-­‐Purpose	
   0	
   10	
   10	
   8.4%	
  

Other	
   4	
   4	
   3.3%	
  

 
3.4 Problems with the Organization of Instruction 

The organization of instruction is another area where omissions and errors occur. 
[Wright and Hull 90] report that only 30% of instructions in their study contained 
overviews. [Eylon and Reif 84] found that students with less preparation were less 
able to assimilate hierarchical organization information. [Hoc 89] shows that the 
kinds of adequate abstractions needed to develop working instructions are in fact 
hard for people to design.  To remedy this, [Van Merriënboer et al 03] describes how 
to sequence lessons with simple-to-complex strategies to teach complex tasks.  One is 
a part-task approach where the learner starts with simpler tasks and builds up skills 
to the more  complex tasks.  Each instructional  objective  covers one of the sub-tasks.  
It is not until the end of the curriculum that the learner can practice the whole task.  
While this is not a practical approach for complex tasks that require a high level 
integration of constituent skills, part-task practice is useful for drilling on problems 
on recurrent aspects of an overall complex task.  A second alternative is a whole-task 
approach where a simplified but real version of the entire procedure is presented at 
the beginning, designing subsequent lessons to cover other conditions for the task 
that uncover further complexity.  This approach breaks down the complex tasks by 
identifying equivalence classes of problems, where the simplified version might 
correspond to a class of simpler task problems. 
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Table 5. Frequencies of types of information in instruction (senses) for a corpus 
and their mappings to rhetorical relations, from [Kosseim and Lapalme 00]. 
 
 

	
  	
   Entire	
  corpus	
   Execution	
  
Texts	
  

Hybrid	
  
Texts	
  

Comprehension	
  
Texts	
  

Sense	
   Number	
  of	
  
occurrences	
   %	
   %	
   %	
   %	
  

ATTRIBUTE	
   158	
   11	
   3	
   17	
   95	
  

REQUIRED	
  OPERATION	
   762	
   52	
   65	
   40	
   29	
  

CONDITION	
   164	
   11	
   11	
   12	
   9	
  

OUTCOME	
   136	
   9	
   7	
   13	
   9	
  

GUIDANCE	
   124	
   8	
   9	
   8	
   8	
  

CO-­‐TEMPORAL	
  OPERATION	
   45	
   3	
   1	
   4	
   7	
  

OPTION	
   34	
   2	
   2	
   3	
   3	
  

PREVENTION	
   21	
   1	
   1	
   2	
   2	
  

POSSIBLE	
  OPERATION	
   15	
   1	
   1	
   1	
   2	
  

OTHER	
   12	
   1	
   0	
   0	
   5	
  

Total	
   1471	
   ≈100	
   100	
   100	
   100	
  

 
 
 

Sense	
  
Rhetorical	
  Relation	
  

sequence	
   c-­‐
condition	
   elaboration	
   purpose	
   result	
  	
   means	
   concurrency	
  

ATTRIBUTE	
   	
  	
   	
  	
   100%	
   	
  	
   	
  	
   	
  	
   	
  	
  
REQUIRED	
  
OPERATION	
   98%	
   1%	
   	
  	
   1%	
   	
  	
   	
  	
   	
  	
  

CONDITION	
   2%	
   90%	
   	
  	
   4%	
   4%	
   	
  	
   	
  	
  

OUTCOME	
   	
  	
   	
  	
   	
  	
   28%	
   68%	
   4%	
   	
  	
  

GUIDANCE	
   	
  	
   	
  	
   	
  	
   31%	
   	
  	
   69%	
   	
  	
  
CO-­‐TEMPORAL	
  
OPERATION	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   	
  	
   100%	
  

OPTION	
   	
  	
   21%	
   	
  	
   79%	
   	
  	
   	
  	
   	
  	
  

PREVENTION	
   86%	
   	
  	
   	
  	
   	
  	
   	
  	
   14%	
   	
  	
  
POSSIBLE	
  
OPERATION	
   	
  	
   73%	
   	
  	
   	
  	
   	
  	
   27%	
   	
  	
  

 
 

 
 
 
 

3.5 Missing and Erroneous Information about Control Constructs 
Control constructs are truly prone to errors, as humans appear to find many 

traditional programming constructs to be unnatural and hard to grasp. [Miller 81] 
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did a corpus analysis over instructions provided by different subjects, and categorized 
the types of information used.  Figure 12 shows the six major categories and twenty-
five subcategories used, as well as their frequency in two different instruction 
corpora.  The frequency is also shown for those same categories as they appear in a 
set of programs written by students.  There are major differences in terms of the 
amount of transfer of control statements, and the difference would likely be larger 
with a corpus of programs that had been fully complete and made robust to errors.  
Table 6 summarizes the major differences found between natural language 
expressions of procedures and typical characteristics and constructs in programming 
languages. Figure 13 gives an example that contrasts pseudo-code for a program with 
the natural language instructions for a task.  The program follows a conditioned 
action style, in contrast the corresponding natural language instruction follows 
action qualification style (the arrow indicates the primary action).  Note that control 
statements are a notorious differentiator. 

Control constructs involving conditional expressions are notoriously hard for 
humans to express correctly.  When human instructors express conditional 
expressions within a procedure they do not intend them to be interpreted by the rules 
of Boolean logic [Pane and Myers 00a]. The same was observed in studies of database 
query formulation [Androutsopoulos et al 95; Greene et al 90].  For example, in “Find 
the customers that are located in California and Nevada” the word ‘and’ is meant to 
be interpreted as a Boolean or.  The word ‘or’ often means exclusive or.  The difficulty 
in comprehending and stating Boolean expressions has been found to be correlated 
with their complexity [Feldman 00; Miller 74].  Even subjects with significant 
experience in formal logic have been found to make the same kinds of mistakes in 
complex queries than other subjects [Weiland and Shneiderman 92]. Using 
parentheses for grouping subexpressions was not found to help users [Greene et al 
90].  Alternative mechanisms to natural language entry have been proposed that 
effectively reduce the error rates in constructing and interpreting Boolean 
expressions, including visual languages such as flow-based selection [Young and 
Shneiderman 93], logic gates [Green and Petre 96], and Karnaugh maps [Huo and 
Cowan 08] as well as textual alternatives such as query by example and tabular 
query forms [Pane and Myers 00b].   

Conditionals and iterations are often incompletely specified in human 
instructions.  An example of an incomplete partial conditional (from [Miller 81]): 

 “(1) See if the age of the person is greater than 50;  
  (2) Write his name down on a list.”  

and a loop with no explicit termination condition: 

 “Wet hair, apply shampoo, rinse, and repeat.” 

It is worth mentioning here that although rules are a natural way to convey 
control knowledge, teaching procedures using this format has been shown to lead to 
inaccurate lessons. [Clark et al 04] points to several studies that provide evidence for 
this and argues that teaching complex tasks appropriately requires following a 
methodology that recognizes the role of rules and avoids well-known pitfalls.  To 
solve a task, important cues from the environment must be recognized and associated 
with steps, which may be covert (cognitive) or overt (action) steps.  Through practice, 
conditional cues and steps are mapped to rules that require much less cognitive effort 
and  lead  to  better  speed  and  performance.  In  the end,  if-then  rules  are  strung  
_________________________________________________________________________ 
1.  Actions involving existing data structures   
     (a)  Files – go, get, use, look, open, select 
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     (b)  Records – same 
     (c)  Records – movement to a different location 
     (d)  Item – go, get, use, look, select 
     (e)  Problem – problem statement, other given information 
   
2.  Actions involving new data structures 
      (a)  Creating new item/record (single) 
      (b)  Creating new item/record (multiple) 
      (c)  Manipulation – go, get, use, move, label 
   
3.  Attribute testing 
      (a)  Check on single record, attribute, and value mentioned explicitly 
      (b)  Check on multiple records, attribute, and value mentioned explicitly 
      (c)  Check on single record, only value explicit 
      (d)  Check on multiple records, only value explicit 
      (e)  Check on something other than attribute or value 
      (f)  Check on single record, attribute/value mentioned only implicitly or in  
             incomplete linguistic structure 
      (g)  Check on multiple records, attribute/value mentioned only implicitly  
              or in incomplete linguistic structure 
   
4.  Transfer of control 
      (a)  Iteration, repetition 
      (b)  Full conditional ( with provision for both outcomes) 
      (c)  Partial conditional (provision only for successful test outcome; no  
             provision for “ELSE” or no outcome) 
      (d)  Unconditional transfer or “GOTO” 
      (e)  Sequencing reference – “after, when, until” 
      (f)  Reference to terminating procedure (“stop”) 
   
5.  Transformations 
      (a)  Explicit ordering of new data (“alphabetize”) 
      (b)  Computations involving item information 
      (c)  Invoke some other general procedure 
   
6.  Miscellaneous 
      (a)  Nonprocedural comments 
_________________________________________________________________________ 
 

Content	
  class	
   Attrib.	
  (%)	
   Nocont.	
  (%)	
   Knuth	
  (%)	
  
1.	
  Existing	
  data	
   40	
   21	
   16	
  
2.	
  New	
  Data	
   16	
   45	
   18	
  
3.	
  Attribute	
  test	
   27	
   4	
   7	
  
4.	
  Control	
   9	
   3	
   22	
  
5.	
  Procedures	
   7	
   26	
   27	
  
6.	
  Comments	
   1	
   1	
   10	
  

 
Fig. 12. Types of information appearing in instructions by several 

subjects (top), and frequency of each in two different corpus (an 
attribute testing task and a noncontingent task) compared to a corpus 
of programs (supplied by Knuth), from [Miller 81]. 

 
 

Table 6. Comparison of common features of programming languages and their 
use in natural language specifications (from [Miller 81]).   
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Features	
   Programming	
  languages	
   Natural	
  language	
  specifications	
  

Data	
  

	
  	
  	
  	
  	
  	
  Declarations,	
  etc.	
   Always	
  explicit	
   Never	
  occurred	
  

	
  	
  	
  	
  	
  	
  References	
   Explicit,	
  well-­‐defined	
   Implicit,	
  contextual	
  

	
  	
  	
  	
  	
  	
  Examination/creation	
   Usually	
  iterative,	
  element	
  by	
  
element	
  

On	
  aggregate	
  basis	
  

	
  	
  	
  	
  	
  	
  Indexing	
   By	
  numerical/variable	
  value,	
  
major	
  aspect	
  

Seldom	
  occurred,	
  then	
  contextually	
  
defined	
  (e.g.	
  ”next,”	
  “previous”)	
  

	
  	
  	
  	
  	
  	
  Data	
  types	
   Many,	
  defined	
   No	
  distinction	
  

	
  	
  	
  	
  	
  	
  Format	
  specs.	
   Many,	
  explicit	
   Infrequent,	
  contextual	
  

Transfer	
  of	
  control	
  	
  

	
  	
  	
  	
  	
  	
  Extent	
   Major	
  aspect	
  of	
  programs	
  and	
  
style	
  

Seldom	
  specified	
  

	
  	
  	
  	
  	
  	
  IF-­‐THEN-­‐ELSE	
   Most	
  used	
  at	
  present	
   When	
  occurred,	
  only	
  partial	
  –	
  IF-­‐
THEN	
  (no	
  else)	
  

	
  	
  	
  	
  	
  	
  IF	
  (cond.)	
  GOTO	
   Major	
  feature	
   Never	
  occurred	
  

	
  	
  	
  	
  	
  	
  Uncond.	
  GOTO	
   Was	
  major,	
  still	
  common	
   Never	
  occurred	
  

	
  	
  	
  	
  	
  	
  Exception	
  detec.	
   Important	
  feature	
   Never	
  occurred	
  

	
  	
  	
  	
  	
  	
  Structure	
   Many	
  types:	
  recursion,	
  co-­‐
routines,	
  nonlinear	
  

Basically	
  linear	
  block	
  structures	
  

	
  	
  	
  	
  	
  	
  Procedure	
  calls	
   Frequent,	
  specified	
  completely	
   Mostly	
  control	
  mechanism,	
  but	
  
context	
  specified	
  

	
  	
  	
  	
  	
  	
  Argument	
  passing	
   Always	
  explicit	
   Mostly	
  implicit	
  

General	
  language	
  

	
  	
  	
  	
  	
  	
  Lexicon	
   Very	
  limited,	
  except	
  for	
  variable	
  
names	
  

Can	
  be	
  rich	
  and	
  large,	
  with	
  many	
  
synonyms,	
  may	
  be	
  restricted	
  

	
  	
  	
  	
  	
  	
  Sentence	
  type	
   Active	
  imperative	
  and	
  
conditional	
  

Mainly	
  active	
  imperative,	
  but	
  can	
  be	
  
declarative/conditional	
  

	
  	
  	
  	
  	
  	
  Sentence	
  syntax	
   Quite	
  rigid	
   Extremely	
  variable,	
  may	
  be	
  very	
  
complex	
  

 
 
together to generate behavior, and therefore if-then rules become a natural way to 
convey knowledge. For example, studies have shown that up to one third of the 
relevant cues are not included in instruction, and that the knowledge conveyed is 
often not sufficient to solve the task [Clark et al 04].  Cognitive task analysis offers 
an effective methodology for formulating lessons and exposing covert knowledge that 
is crucial to teach complex tasks [Clark et al 04].   

 
 
 
 
 
 

_________________________________________________________________________ 
DO END UNTIL TIME = 5:00PM 
       I = 0 
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       DO END OUT WHILE 1 < 200 
               I = I + I 
                              OPEN BOX (I) 
                              J = 0 
                             DO  END.IN WHILE J < 12 
                                     GET NEXT BALL 
                                     IF RED THEN 
                                             IF LARGE THEN 
                                                     IF UNBROKEN THEN 
                                                           J = J + 1 
                         ------------------→  PACK BALL IN BOX(I) CELL(J) 
                                                           RETURN (END.IN) 
                                                     ELSE RETURN (END.IN) 
                                             ELSE RETURN (END.IN) 
                                     ELSE RETURN (END.IN) 
                              END.IN 
                              CLOSE BOX (I) 
                     END.OUT 
                END 
 
                                                                    (A) Program Normal Form 
 
 
         --------→  PACK LARGE RED DECORATIONS TWELVE TO A BOX. 
                                 MAKE UP A TOTAL OF 200 BOEXES. 
                                 STOP AT 5:00 PM IF NOT FINISHED. 
                                 BE SURE TO PACK ONLY THE UNBROKEN ONES. 
 
                                                                      (B) Natural Normal Form 
_________________________________________________________________________ 

 
Fig. 13. A comparison of a program pseudo-code (A) versus natural language 

instruction for the same task (B) (from [Miller 81]).   
 
 

3.6 Summary 
In its natural form, human instruction is plagued with errors and omissions.  This is 
a natural way for people to describe procedures, as too much detail is often 
considered too verbose and unnatural.   This makes human instruction be far from 
the kind of complete and correct logical instruction set that a computer could 
interpret and execute.  In order to learn from human instruction, a system must be 
able to cope with all these faults. 

4. RESEARCH CHALLENGES IN LEARNING FROM TUTORIAL INSTRUCTION 
We have described so far a range of difficulties in learning from tutorial 

instruction.  We presented the different kinds of information that can be specified 
about procedures.  We also discussed various kinds of faults that appear in human 
instructions, including errors and omissions as well as mis-organization in the 
presentation of information.  We now reflect on how these characteristics affect the 
difficulty in learning from instruction, and discuss research challenges in several 
aspects of this task.  

 
4.1 Learning Difficulty in Tutorial Lessons  

The omissions and errors that human teachers commonly commit in tutorial 
lessons must be corrected in order to learn a proper procedure. To learn from a given 
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lesson, the system must consider how to fill possible omissions and how to fix the 
errors. This leads to many combinations of hypotheses that result in alternative 
possible models of the procedure to be learned. The student must then reason about 
the plausibility and likelihood of alternative models, perhaps based on background 
knowledge or what it has already learned.  Concisely put, the difficulty of the 
learning task increases when the lessons contain more information because the 
procedures are complex, and when larger numbers of omissions and errors are 
present.  We discuss the challenges of the learning task as we revisit the four broad 
categories of information that appear in procedural knowledge: background 
information, procedure steps, organization of the instruction, and control structures. 

The first category is the specification of background information through the 
introduction of objects.  Procedures are applied in a rich context that involves objects 
with specific properties and relationships.  That is, instruction of procedures is often 
situated in that it is framed in the context of a general situation, specified by 
introducing a set of generic objects.  For example, a lesson may start off by saying 
“suppose you have a route to follow, and a vehicle that cannot negotiate slopes of 
more than 30 degrees”, which introduces two objects and their types plus a property 
constraint.  If the instruction introduces all the objects and constraints that will be 
used in the lesson, it is easier for the student to understand how the objects are used 
throughout the procedure.  If the instruction does not introduce some of the objects, 
then the student has to hypothesize what the objects are and what their types and 
constraints might be in the situations where the procedure must be applied.  The 
more objects that are not properly introduced by the teacher, the harder the learning 
task because there are more hypotheses to explore.  A different dimension that 
makes learning harder is the resolution of references when objects are similar.   If 
there are several objects of similar types that are not specifically introduced by the 
teacher, it will be harder for the student to figure out which object references might 
be the same and which might refer to a distinct object and therefore figure out how 
many distinct objects need to be present. In those cases, the student has to 
hypothesize and explore more alternative assignments or permutations of the data 
objects.   

In introducing new objects, another source of difficulty for learning is mixing the 
introduction of the objects within other expressions.  A case of this is the need to 
introduce existential or universal quantification.  In general, there can be multiple 
different interpretations of the same expression that lead to different uses of 
quantifiers, depending on the nature of the introduced objects and how they are 
related.  When such quantification is not explicitly stated, the student needs to form 
multiple different hypotheses. The number of hypotheses will grow when the student 
has to consider alternative interpretations of multiple objects.   

The second category is the description of procedure steps.  Here, what makes 
learning procedures more difficult is the lack of necessary details in describing a 
procedure’s steps.  For example, the instruction may call a subprocedure as one of the 
steps but omit arguments that are required by the definition of the subprocedure.   In 
that case, the student must hypothesize what objects may be used to invoked the 
subprocedure, perhaps also hypothesizing objects that were not introduced in the 
instruction.  The more arguments missing and the more candidate objects, the larger 
the hypothesis space to explore.  Steps can also be specified indirectly by mentioning 
the effect of an action but not the action itself.  For example, the instruction may say 
“Before starting the engine make sure there is gas in the tank.”  In those cases, the 
student must rely on prior knowledge about actions that may have the effect 
mentioned, then insert the action where it may be appropriate in the procedure.  The 
more candidate actions and insertion locations, the harder learning is.  Instruction 
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may also lack information about what to do when exceptions arise. In these cases, the 
student is unlikely to infer what the missing information is and would have to wait 
for other opportunities to learn that, for example with follow up instruction, 
practicing on their own, or observing the teacher. 

The third category is the specification of relations among steps, including ordering 
relations, causal relations, dataflow relations, resource relations, and temporal 
relations.  A major source of difficulty is that instruction is always provided in a 
sequential order but a procedure’s step structure may be quite complex and non-
linear.  Of immediate concern are step ordering relations.  The instruction may 
specify steps in a convenient but not necessarily correct order.  In addition, steps are 
given in a sequence when the actual dependencies among steps are better 
represented as a partial order. If the step ordering is not fully specified or incorrect, 
the student needs to reason about possible steps and step orderings, as well as other 
relationships among them such as causal or dataflow relations.  The space to explore 
can grow quickly as the number of hypotheses or the degree of ambiguity is higher.  

An important relationship among steps is based on how the results and effects of 
each step are used by others.  Some actions have side effects and do not return any 
specific result, while other actions return an object that can be used as an argument 
of subsequent steps.  The former typically correspond to representations of physical 
procedures while the latter are functions meant to be evaluated to find a value.  If 
the student knows that a function is to be learned, then the student can reason about 
what each step is returning and the compatibility between the objects produced and 
returned by each substep as well as the entire function.  If the student does not know 
whether a function or a procedure is to be learned, then the student must reason 
about the effects of each action (including side-effects and conditional effects) and the 
prerequisites of other actions in order to figure out how the substeps are related. 

The fourth category is control constructs to organize steps. Control constructs 
such as conditionals and iterations are notoriously challenging for human teachers to 
specify in all the detail necessary in order for a procedure to be executable.  That is, 
natural human instruction typically leaves out important things such as 
initialization and termination conditions for iterations, clauses in conditions, else 
statements, and the need to create temporary variables (e.g., counters) for iterations.  
When conditions and iterations are present, the student’s analysis of the procedure 
becomes more complex.  For conditional branches, the student needs to consider the 
alternative data flows and control flows possible. For iterations, the student may 
need to analyze several folds in order to understand how a loop needs to work.  
Iterations that are easier to learn involve processing sets of objects one at a time.  
Harder iterations to learn are those that require the student to set up loops with new 
variables and infer exceptional initial and termination conditions.  Conditionals that 
are easier to learn involve checking the state for a new object or property value to 
manifest.  More complex conditionals can mention disjuncts and negations whose 
scope may be hard to determine from the instruction.  

Combinations and nestings of conditionals and iterations within a procedure 
make learning harder.  When conditional statements are nested, instructions 
typically do not specify the scoping of each statement.  When scoping is ambiguous, 
the student must create and explore alternative hypotheses.  The more combinations, 
the larger the search space that the student must explore.  Iterations can also be 
nested, raising the complexity of learning because of potential interactions between 
the objects in the inner and outer loops.  

To sum up, the nature and amount of imperfections in the instruction affects the 
complexity of the learning task.   At the hardest end of the scale is learning more 
complex procedures with more faulty instruction.  At the more tractable end of the 
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scale is where research to date has focused, where users are either constrained to 
express simpler procedures or constrained to produce more precise and error-free 
instruction.  Learning systems must be able to fill in gaps through any knowledge 
they already have, or perhaps have the capability of asking questions that expose 
where the instruction could be completed by the human teacher. 

 
4.2 Natural User Interfaces for Tutorial Instruction  

In order for non-programmers to provide tutorial instruction, they need interfaces 
that they find natural and allow them to specify instruction in a manner similar to 
how they would interact with a person.  Using natural language is a good approach, 
but the difficulties to interpreting natural language are many.  Several directions are 
possible, either by using graphical languages or constraining natural language. 

Visual programming and other natural interface designs have been developed 
that are effective means to convey instruction.  [Kelleher and Pausch 05; Ko et al 11] 
provide a thorough overview of such systems, which they call empowering systems 
since they aim to help non-programmers to specify behaviors for a computer system.  
Some of the best known systems are AgentSheets, Stagecast, Logo, Alice, Forms/3, 
and Hypercard.  Successful techniques include programming by rehearsal by 
personifying components, the use of domino icons or comic strips to show before and 
after states for actions, 2-D grids and patterns for specifying conditions for behavior 
rules, physical metaphors to represent objects and behaviors, associating behaviors 
to interface components, object-centric commands that can be interpreted, commands 
with graded complexity in parameters, aggregate operations over objects, making 
specifications alive so they can always be tested even if partially specified, extending 
spreadsheets to create new data types and their associated behaviors, event-triggered 
behaviors, and visual dataflow languages.  Most of these tools are designed to target 
specific tasks, objects, or behaviors.  Yet they have been shown effective in 
experiments with non-programmers, and some are commercialized and have been 
used by thousands of users. 

[Nardi 95] provides good arguments in favor of structured languages that are 
neither visual nor natural language text, and shows that they can be at least as 
natural and as effective as visual languages and interfaces, particularly for complex 
tasks. Nardi points to studies that show that visual languages are not more effective 
than textual languages, and that when they are the improvements are not huge.   
Spreadsheets and CAD systems are two perfect examples of languages that are not 
text and yet effectively used by end users to program their applications [Nardi 95; 
Kay 84].  The key is to offer primitives and operations that are appropriate for the 
type of task targeted by the system, to localize the complexity of the language so it is 
accessible, and to make it clear to the user what the side effects of any change are.  
Spreadsheets, for example, offer a textual language that contains a library of 
operations, and a clear model of how changes in a given cell affect other cells.  
Conditional constructs can be complex and nested but have clear local effects in that 
they only affect the cell where they are defined.  Iterations are easily defined by 
aggregating groups of cells.  Spreadsheets also expose clearly the propagation 
mechanisms of cell values, so users can anticipate the effects of their operations.  
Another useful feature is that they provide a sophisticated interactive browser. Nardi 
quotes [Brooks 87] to convey these points: 

 

“Software is very difficult to visualize.  Whether one diagrams control flow, 
variable-scope nesting, variable cross-references, dataflow, hierarchical data 
structures, or whatever, one feels only one dimension of the intricately 
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interlocked software elephant.  If one superimposes all diagrams generated by 
the many relevant views, it is difficult to extract any global overview.” 

[Nardi 95] also points out that many formal languages are used by non-
programmers for a variety of tasks.  Unlike programming languages, these formal 
languages are used daily by large amounts of people.  Examples include musical 
notation, algebra, baseball scoresheets, and knitting patterns.  These languages 
prove that people are willing to invest the time to learn a new complex language as 
long as it is accessible and it is natural for the task they need to perform.   Natural 
language is clearly not the most popular or convenient means to express instructions 
for those tasks.  Nardi argues that the key to developing a successful language and 
interface for end users is to study the task that they are targeted for, and design the 
language and the interface to serve no less and no more than that task.  Nardi quotes 
[Winograd and Flores 86]: 

“[Driving a car] is not achieved by having a car communicate like a person 
[i.e., through conversation], but by providing the right coupling between the 
driver and action in the relevant domain (motion down the road).” 

Controlled natural language is a compromise between a formal language and 
natural language [Nyberg and Mitamura 96; Fuchs et al 96; Fuchs et al 06].  
Controlled languages have been used effectively in a variety of contexts, notably for 
technical documentation manuals in order to facilitate machine translation and 
readability.  [Blythe and Gil 04] used a controlled English interface generated from 
ontological models to interactively reformulate user instruction to be understandable 
by the system and to eliminate ambiguity in the user utterances.  A core process 
model can be the basis for a controlled English interface [Fuchs et al 06; Clark et al 
05].  

 
4.3 Helping Humans Improve How They Teach 

Another challenging research area is to guide humans to provide more complete 
and correct instruction that facilitates the system’s learning task.   

  Some approaches have been proposed for guiding a human teacher to generate 
more complete instruction.  This is known as guided instruction. [Mahling and Croft 
88] show that forms are a very successful means of eliciting information about 
effects, which they found are often missing from instructions.  [Van Merrienboer 97] 
proposes the use of process worksheets to guide students through complex tasks. 
Worked examples and process worksheets are also effective techniques for guided 
instruction.  [Young 99] studied the production of automatic instructions from formal 
representations of procedures.  They found that including too much detail leads to 
lack of flexibility in accomplishing subtasks, while providing insufficient detail 
results on omitting preference information to discern across choices for 
underspecified steps.  The challenge is in finding the right balance between making 
the instruction more complete while leaving enough flexibility to the human teacher.  

Other approaches are based on structuring the interactions with the teacher 
based on a shared declarative model of process properties.  A shared process model is 
essentially a general ontology of process properties (input requirements, conditions, 
subtasks, etc), often known as an upper model or upper ontology.  This shared model 
cannot be based on the requirements of the system only, but rather needs to take into 
account the cognitive aspects of human instructional practices. For example, 
[Mahling and Croft 88] propose a framework that accounts for their human task 
recall studies that could be used as such an ontology. [Mahling and Croft 88] 
combined their framework with the use of pre-populated forms, where the forms 
elicit effects from users that would otherwise naturally provide poor instruction 
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about effects of actions.  Tutorial instruction of procedures, like other forms of 
scientific and technical expositions, exhibits goal-oriented hierarchical structure 
[Britt and Larson 03].  Such goal decomposition hierarchies have been found to be 
useful for guiding users to specify procedures [Gil and Melz 96] as well as for 
providing explanations [Swartout et al 91]. 

 
4.4 Adjusting People’s Attitude towards Teaching Computers  

The interaction that human teachers have when instructing computers versus 
instructing other humans turns out to be different.  In general, humans interact with 
computers differently than with other humans, and this applies to instruction as well 
[Herberg et al 08]. Other studies report that existing learning algorithms do not 
conform to the kinds of instruction that humans provide [Thomaz and Breazeal 08a; 
Thomaz and Breazeal 08b; Thomaz and Cakmak 09], making it hard to adapt them 
for learning from tutorial instruction. User studies where humans teach procedures 
to robots have found that speech prosody (tone of voice and rhythm) and affect 
(emotions and attitudes) are used to convey some forms of instruction. 

A great challenge is that people do not have a good model of the abilities of 
computer systems.  This is important because humans customize their instruction in 
response to the learner’s competence level. [Kim et al 09] found that a student that 
had made mistakes before received more detailed instruction than one that had not 
made prior mistakes. Human teachers also expect learners to become more 
competent over time [Butko and Movellan 07].  The challenge for the system is to 
convey its abilities in terms of what kinds of instruction it is able to learn from and 
what it understands from the human teacher.  

 
4.5 Learning from Instruction in Combination with Other Teaching Modalities  

Instruction can be of many kinds [Webber et al 95], including general policies 
regarding acceptable behaviors, advice on how to proceed, suggestions for 
preferences, analogies, requests, and tutorial descriptions. Instruction can be given 
before, during, or after a procedure takes place.  During the execution of a procedure, 
the instruction may be given to overcome a specific failure.   

Instruction can have didactic or dialogue style [Chi et al 01].  In a didactic style, 
the teacher provides an expository presentation of the entire instruction set.  In a 
dialogue style, the teacher may respond to prompts from the student, provide 
explanations for specific aspects of a problem the student is solving, or provide 
feedback based on the student’s actions.  

Tutorial instruction can be combined with other forms of instruction, such as 
using examples or demonstrations.   They can also be presented in the context of 
general situations or scenarios. 

Instruction may be accompanied of diagrams or pictures, or consist solely of text 
[Larkin and Simon 87; Koedinger and Anderson 92; Chandrasekaran et al 95]. 

The particular focus of this article is tutorial instruction of procedures that are 
recurrent and routine, given before execution with a didactic-style, and provided in 
natural language.  A major research challenge is to combine this modality of teaching 
with all these other modalities, such as learning from tutorial instruction that 
integrates text and diagrams, learning from tutorial instruction combined with 
examples or demonstrations, or providing tutorial instruction when the student 
makes mistakes while practicing a procedure that the student has learned. 
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5. CONCLUSIONS 
Developing systems that can learn procedures from tutorial instruction provided 

by end users has been a long-standing research goal.   This would enable large 
numbers of people to develop complex applications without having to learn to 
program.   In this paper, we surveyed work from the literature that highlights the 
challenges in learning from tutorial instruction, illustrating them with examples in 
many domains. We discussed two major characteristics of tutorial lessons affect the 
difficulty of learning procedures from human teachers.  First, procedures can be very 
complex and involve many different types of interrelated information: 1) situating 
the instruction in the context of relevant objects and their properties, 2) describing 
the steps involved, 3) specifying the organization of the procedure in terms of 
relationships among steps and substeps, and 4) conveying control structures. Second, 
human tutorial instruction is naturally plagued with omissions, oversights, 
unintentional inconsistencies, errors, and simply poor design.  We also discussed how 
the complexity of the learning task increases with the complexity of the procedure in 
terms of the information to be conveyed and in terms of the amount of omissions and 
errors that occur in each of these dimensions.  

This article provides a framework to situate the research to date on addressing 
these challenges.   To understand the state of the art, a survey would need to cover 
research in very different areas spanning several decades, including end user 
programming (e.g., [Lieberman et al 05; Kelleher and Pausch 05; Myers et al 04; Ko 
et al 06]), intelligent user interfaces (e.g., [Allen et al 07; Gil et al 12]), knowledge 
capture (e.g., [Clark et al 05]), machine learning (e.g., [Walker et al 11; Gil et al 11; 
Huffman and Laird 95]), natural language (e.g., [Fuchs et al 06; Webber et al 95]), 
and robotics (e.g., [Gold and Scassellati 07; Gold et al 07; Kim and Scassellati 07]). 

Despite the challenges highlighted in this article, humans can learn from such 
imperfect instruction because they have strategies to work around those 
imperfections.  Clearly, the student’s task is easier or harder depending on the 
degree and nature of the imperfections in the instruction.  We should design systems 
that exhibit the same kind of resilience.  They will be more accessible to human 
teachers if they are equipped to learn from the kinds of instruction that human 
teachers typically provide.  
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